1. 分类算法-K近邻算法(KNN)

定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法。

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

1.1 计算距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离。
比如说,a(a1,a2,a3),b(b1,b2,b3)

初识人工智能(二):机器学习(四):分类算法-K近邻算法(KNN) Python 第1张

1.2 例子

根据前面几个电影的数据来判断最后一个电影是什么类型的电影。

初识人工智能(二):机器学习(四):分类算法-K近邻算法(KNN) Python 第2张

我们可以很容易的看出,最后一个是爱情片,那么程序如何判断呢? 

根据我们前面说的距离公式,套进去,就可以得到前面的电影和最后一部电影的距离。

初识人工智能(二):机器学习(四):分类算法-K近邻算法(KNN) Python 第3张

1.3 sklearn K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
algorithm:{'auto','ball_tree','kd_tree','brute'},可选用于计算最近邻居的算法:'ball_tree'将会使用 BallTree,'kd_tree'将使用 KDTree。'auto'将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

1.4 K近邻算法-预测入住位置

初识人工智能(二):机器学习(四):分类算法-K近邻算法(KNN) Python 第4张

数据链接:https://www.kaggle.com/c/facebook-v-predicting-check-ins/data 

档案说明

  • train.csv,test.csv 
    • row_id:签到事件的ID
    • xy:坐标
    • 精度:位置精度 
    • 时间:时间戳
    • place_id:商家的ID,这是您要预测的目标
  • sample_submission.csv-带有随机预测的正确格式的样本提交文件

数据的处理:

1、缩小数据集范围
DataFrame.query()
2、处理日期数据
pd.to_datetime
pd.DatetimeIndex
3、增加分割的日期数据
4、删除没用的日期数据
pd.drop
5、将签到位置少于n个用户的删除
place_count =data.groupby('place_id').aggregate(np.count_nonzero)
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd

def knncls():
    """
    K-近邻预测用户签到位置
    :return:None
    """
    # 读取数据
    data = pd.read_csv("./data/FBlocation/train.csv")

    # print(data.head(10))

    # 处理数据
    # 1、缩小数据,查询数据晒讯
    data = data.query("x > 1.0 &  x < 1.25 & y > 2.5 & y < 2.75")

    # 处理时间的数据
    time_value = pd.to_datetime(data['time'], unit='s')

    print(time_value)

    # 把日期格式转换成 字典格式
    time_value = pd.DatetimeIndex(time_value)

    # 构造一些特征
    data['day'] = time_value.day
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday

    # 把时间戳特征删除
    data = data.drop(['time'], axis=1)

    print(data)

    # 把签到数量少于n个目标位置删除
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    # 取出数据当中的特征值和目标值
    y = data['place_id']

    x = data.drop(['place_id'], axis=1)

    # 进行数据的分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)

    x_test = std.transform(x_test)

    # 进行算法流程 # 超参数
    knn = KNeighborsClassifier()

    # # fit, predict,score
    # knn.fit(x_train, y_train)
    #
    # # 得出预测结果
    # y_predict = knn.predict(x_test)
    #
    # print("预测的目标签到位置为:", y_predict)
    #
    # # 得出准确率
    # print("预测的准确率:", knn.score(x_test, y_test))

    # 构造一些参数的值进行搜索
    param = {"n_neighbors": [3, 5, 10]}

    # 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    # 预测准确率
    print("在测试集上准确率:", gc.score(x_test, y_test))

    print("在交叉验证当中最好的结果:", gc.best_score_)

    print("选择最好的模型是:", gc.best_estimator_)

    print("每个超参数每次交叉验证的结果:", gc.cv_results_)

    return None

if __name__ == "__main__":
    knncls()

1.5 k-近邻算法优缺点

优点:
简单,易于理解,易于实现,无需估计参数,无需训练
缺点:
懒惰算法,对测试样本分类时的计算量大,内存开销大
必须指定K值,K值选择不当则分类精度不能保证

使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试  

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄