接上一篇 :AI算法综述 (一)

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

RNN:循环神经网络 and LSTM 长短期记忆网络

LSTM就是一个RNN网络,外部的结构是一样的,主要是单元的内在结构不同。或者说LSTM是为了让RNN能够更好的处理NLP(自然语言问题)做的一些内部改造。

我推荐这篇文章理解LSTM :https://www.jianshu.com/p/9dc9f41f0b29

可能会比我自己说的更好,我这里就简单说一下,不涉及太多技术细节。

我们先回顾一下基本的神经网络结构图

人工智能算法综述(二) RNN and LSTM 人工智能 第1张

整体结构就是 输入层+N层隐层+输出层。

数据的流向就是由左往右,输入X1,X2,X3 会分发给隐层通过这些连线传递过去,然后在节点计算之后有一个输出,继续分发给下一层。

那么单独拎一个节点放大来看的话就是这样的。

人工智能算法综述(二) RNN and LSTM 人工智能 第2张

Z就是某中间节点。  这就是标准的前馈神经网络的结构。

这种结构在处理某一类问题的时候非常无力,就是比方说当前的识别结果,需要依赖上一次的识别结果。

具体的场景就是自然语言的翻译,翻译需要结合上下文语境才能更精确的翻译出来。而不能像某些机译一样,一句一句单独翻译。

 

 

那么RNN 所谓的循环神经网络就是在这中间节点做了一个改造。

人工智能算法综述(二) RNN and LSTM 人工智能 第3张

 

这个改造就是,把中间节点的输出拷贝一份出来,然后混合着下一次的输入再做一次计算(激活函数)得出结果,反复如是,直到没有输入。

 

 那LSTM跟这个RNN有什么区别呢?

RNN当然也不是万能的,其中也存在各种利弊。

然后有个缺陷,就是假如当前 T 结果依赖上一次 (就是  T -1) 的结果,这问题不大,那如果 依赖 T-2 或者更远一点 T-10 的结果呢?

然后大家看回那个结构图,h20 的结果如果依赖 X1  那么中间的路途遥远,原输入经过了很多次计算才到H20 损耗非常大,变数更大。

而且需要依赖上下文语境的情况在自然语言处理中还普遍存在。所以……

当当当……

LSTM应运而生,为了世界和平而生。

我们先看一下LSTM跟常规的RNN区别。

主要是绿色块里面的变化,外部结构是一样的。

人工智能算法综述(二) RNN and LSTM 人工智能 第4张

 

这个内在结构长的很像电路板,可以把这个电路板分为3个部件。

分别是“遗忘门” “输入门” “输出门”

具体这个结构怎么实现的这3个门这里不细说,上面那个地址有详细说明,爱看公式的童鞋可以移步。

这里我概括性的讲为啥要有遗忘门跟输入门、输出门

接我们刚才在RNN那里讲的,如果依赖的结果离的很远,比如说T 依赖 T-10 的输出结果。中间隔了一条银河。

你想要T么?先忘掉T-11 T-12…… 之前的所有信息,然后输入T-10,然后 忘掉 T-9 T-8 T-7 …… 然后把 T-10 的输入 通过输出门得出结果。

那么遗忘门的摊开之后的参数就是 从T-12 到 T 就是:

T-11 T-10 T-9 T-8 T-7 T-6 T-5 T-4 T-3 T-2 T-1 T-0
0 1 0 0 0 0 0 0 0 0 0 0

输入门就是:

T-11 T-10 T-9 T-8 T-7 T-6 T-5 T-4 T-3 T-2 T-1 T-0
0 0 0 0 0 0 0 0 0 0 0 1

 

 

RNN的训练过程就是根据标识好的数据,训练调整这些参数到符合这些数据的规律。

好了,RNN就讲到这里,感谢各位阅读!

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄